Задачи для олимпиады по математике с ответами

1. Каж­дую се­кун­ду бак­те­рия де­лит­ся на две новые бак­те­рии. Из­вест­но, что весь объём од­но­го ста­ка­на бак­те­рии за­пол­ня­ют за 1 час. За сколь­ко се­кунд бак­те­рии за­пол­ня­ют по­ло­ви­ну ста­ка­на?
Ответ: 3599

2. На палке от­ме­че­ны по­пе­реч­ные линии крас­но­го, жёлтого и зелёного цвета. Если рас­пи­лить палку по крас­ным ли­ни­ям, по­лу­чит­ся 15 кус­ков, если по жёлтым — 5 кус­ков, а если по зелёным — 7 кус­ков. Сколь­ко кус­ков по­лу­чит­ся, если рас­пи­лить палку по ли­ни­ям всех трёх цве­тов?
Ответ: 25

3. Куз­не­чик пры­га­ет вдоль ко­ор­ди­нат­ной пря­мой в любом на­прав­ле­нии на еди­нич­ный от­ре­зок за один пры­жок. Куз­не­чик на­чи­на­ет пры­гать из на­ча­ла ко­ор­ди­нат. Сколь­ко су­ще­ству­ет раз­лич­ных точек на ко­ор­ди­нат­ной пря­мой, в ко­то­рых куз­не­чик может ока­зать­ся, сде­лав ровно 11 прыж­ков?
Ответ: 12

4. Саша при­гла­сил Петю в гости, ска­зав, что живёт в седь­мом подъ­ез­де в квар­ти­ре № 462, а этаж ска­зать забыл. По­дой­дя к дому, Петя об­на­ру­жил, что дом се­ми­этаж­ный. На каком этаже живёт Саша? (На всех эта­жах число квар­тир оди­на­ко­во, но­ме­ра квар­тир в доме на­чи­на­ют­ся с еди­ни­цы.)
Ответ: 5

5. Саша при­гла­сил Петю в гости, ска­зав, что живёт в вось­мом подъ­ез­де в квар­ти­ре № 468, а этаж ска­зать забыл. По­дой­дя к дому, Петя об­на­ру­жил, что дом две­на­дца­ти­этаж­ный. На каком этаже живёт Саша? (На всех эта­жах число квар­тир оди­на­ко­во, но­ме­ра квар­тир в доме на­чи­на­ют­ся с еди­ни­цы.)
Ответ: 10

6. Саша при­гла­сил Петю в гости, ска­зав, что живёт в две­на­дца­том подъ­ез­де в квар­ти­ре № 465, а этаж ска­зать забыл. По­дой­дя к дому, Петя об­на­ру­жил, что дом пя­ти­этаж­ный. На каком этаже живёт Саша? (На всех эта­жах число квар­тир оди­на­ко­во, но­ме­ра квар­тир в доме на­чи­на­ют­ся с еди­ни­цы.)
Ответ: 4

7. Саша при­гла­сил Петю в гости, ска­зав, что живёт в де­ся­том подъ­ез­де в квар­ти­ре № 333, а этаж ска­зать забыл. По­дой­дя к дому, Петя об­на­ру­жил, что дом де­вя­ти­этаж­ный. На каком этаже живёт Саша? (На всех эта­жах число квар­тир оди­на­ко­во, но­ме­ра квар­тир в доме на­чи­на­ют­ся с еди­ни­цы.)
Ответ: 3

8. Тре­нер по­со­ве­то­вал Ан­дрею в пер­вый день за­ня­тий про­ве­сти на бе­го­вой до­рож­ке 15 минут, а на каж­дом сле­ду­ю­щем за­ня­тии уве­ли­чи­вать время, про­ведённое на бе­го­вой до­рож­ке, на 7 минут. За сколь­ко за­ня­тий Ан­дрей про­ведёт на бе­го­вой до­рож­ке в общей слож­но­сти 2 часа 25 минут, если будет сле­до­вать со­ве­там тре­не­ра?
Ответ: 5

9. Врач про­пи­сал па­ци­ен­ту при­ни­мать ле­кар­ство по такой схеме: в пер­вый день он дол­жен при­нять 3 капли, а в каж­дый сле­ду­ю­щий день — на 3 капли боль­ше, чем в преды­ду­щий. При­няв 30 ка­пель, он ещё 3 дня пьёт по 30 ка­пель ле­кар­ства, а потом еже­днев­но умень­ша­ет приём на 3 капли. Сколь­ко пу­зырь­ков ле­кар­ства нужно ку­пить па­ци­ен­ту на весь курс приёма, если в каж­дом со­дер­жит­ся 20 мл ле­кар­ства (что со­став­ля­ет 250 ка­пель)?
Ответ: 2

10. Врач про­пи­сал па­ци­ен­ту при­ни­мать ле­кар­ство по такой схеме: в пер­вый день он дол­жен при­нять 20 ка­пель, а в каж­дый сле­ду­ю­щий день — на 3 капли боль­ше, чем в преды­ду­щий. После 15 дней приёма па­ци­ент де­ла­ет пе­ре­рыв в 3 дня и про­дол­жа­ет при­ни­мать ле­кар­ство по об­рат­ной схеме: в 19-й день он при­ни­ма­ет столь­ко же ка­пель, сколь­ко и в 15-й день, а затем еже­днев­но умень­ша­ет дозу на 3 капли, пока до­зи­ров­ка не ста­нет мень­ше 3 ка­пель в день. Сколь­ко пу­зырь­ков ле­кар­ства нужно ку­пить па­ци­ен­ту на весь курс приёма, если в каж­дом со­дер­жит­ся 200 ка­пель?
Ответ: 7

11. Про­из­ве­де­ние де­ся­ти иду­щих под­ряд чисел раз­де­ли­ли на 7. Чему может быть равен оста­ток?
Ответ: 0

12. Сколь­ки­ми спо­со­ба­ми можно по­ста­вить в ряд два оди­на­ко­вых крас­ных ку­би­ка, три оди­на­ко­вых зелёных ку­би­ка и один синий кубик?
Ответ: 60

13. В бак объёмом 38 лит­ров каж­дый час, на­чи­ная с 12 часов, на­ли­ва­ют пол­ное ведро воды объёмом 8 лит­ров. Но в днище бака есть не­боль­шая щель, и из неё за час вы­те­ка­ет 3 литра. В какой мо­мент вре­ме­ни (в часах) бак будет за­пол­нен пол­но­стью.
Ответ: 18

14. Какое наи­мень­шее число иду­щих под­ряд чисел нужно взять, чтобы их про­из­ве­де­ние де­ли­лось на 7?
Ответ: 2

15. В ре­зуль­та­те па­вод­ка кот­ло­ван за­пол­нил­ся водой до уров­ня 2 метра. Стро­и­тель­ная помпа не­пре­рыв­но от­ка­чи­ва­ет воду, по­ни­жая её уро­вень на 20 см в час. Под­поч­вен­ные воды, на­о­бо­рот, по­вы­ша­ют уро­вень воды в кот­ло­ва­не на 5 см в час. За сколь­ко часов ра­бо­ты помпы уро­вень воды в кот­ло­ва­не опу­стит­ся до 80 см?
Ответ: 8

16. В меню ре­сто­ра­на име­ет­ся 6 видов са­ла­тов, 3 вида пер­вых блюд, 5 видов вто­рых блюд и 4 вида де­сер­та. Сколь­ко ва­ри­ан­тов обеда из са­ла­та, пер­во­го, вто­ро­го и де­сер­та могут вы­брать по­се­ти­те­ли этого ре­сто­ра­на?
Ответ: 360

17. Неф­тя­ная ком­па­ния бурит сква­жи­ну для до­бы­чи нефти, ко­то­рая за­ле­га­ет, по дан­ным гео­ло­го­раз­вед­ки, на глу­би­не 3 км. В те­че­ние ра­бо­че­го дня бу­риль­щи­ки про­хо­дят 300 мет­ров в глу­би­ну, но за ночь сква­жи­на вновь «за­или­ва­ет­ся», то есть за­пол­ня­ет­ся грун­том на 30 мет­ров. За сколь­ко ра­бо­чих дней неф­тя­ни­ки про­бу­рят сква­жи­ну до глу­би­ны за­ле­га­ния нефти?
Ответ: 11

18. Какое наи­мень­шее число иду­щих под­ряд чисел нужно взять, чтобы их про­из­ве­де­ние де­ли­лось на 9?
Ответ: 2

19. В об­мен­ном пунк­те можно со­вер­шить одну из двух опе­ра­ций:
• за 2 зо­ло­тых мо­не­ты по­лу­чить 3 се­реб­ря­ных и одну мед­ную;
• за 5 се­реб­ря­ных монет по­лу­чить 3 зо­ло­тых и одну мед­ную.
У Ни­ко­лая были толь­ко се­реб­ря­ные мо­не­ты. После не­сколь­ких по­се­ще­ний об­мен­но­го пунк­та се­реб­ря­ных монет у него стало мень­ше, зо­ло­тых не по­яви­лось, зато по­яви­лось 50 мед­ных. На сколь­ко умень­ши­лось ко­ли­че­ство се­реб­ря­ных монет у Ни­ко­лая?
Ответ: 10

20. На по­верх­но­сти гло­бу­са фло­ма­сте­ром про­ве­де­ны 12 па­рал­ле­лей и 22 ме­ри­ди­а­на. На сколь­ко ча­стей про­ведённые линии раз­де­ли­ли по­верх­ность гло­бу­са?
Ме­ри­ди­ан — это дуга окруж­но­сти, со­еди­ня­ю­щая Се­вер­ный и Южный по­лю­сы. Па­рал­лель — это окруж­ность, ле­жа­щая в плос­ко­сти, па­рал­лель­ной плос­ко­сти эк­ва­то­ра.
Ответ: 286

21. В кор­зи­не лежит 50 гри­бов: ры­жи­ки и груз­ди. Из­вест­но, что среди любых 28 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 24 гри­бов хотя бы один груздь. Сколь­ко груз­дей в кор­зи­не?
Ответ: 27

22. Груп­па ту­ри­стов пре­одо­ле­ла гор­ный пе­ре­вал. Пер­вый ки­ло­метр подъёма они пре­одо­ле­ли за 50 минут, а каж­дый сле­ду­ю­щий ки­ло­метр про­хо­ди­ли на 15 минут доль­ше преды­ду­ще­го. По­след­ний ки­ло­метр перед вер­ши­ной был прой­ден за 95 минут. После де­ся­ти­ми­нут­но­го от­ды­ха на вер­ши­не ту­ри­сты на­ча­ли спуск, ко­то­рый был более по­ло­гим. Пер­вый ки­ло­метр после вер­ши­ны был прой­ден за час, а каж­дый сле­ду­ю­щий на 10 минут быст­рее преды­ду­ще­го. Сколь­ко часов груп­па за­тра­ти­ла на весь марш­рут, если по­след­ний ки­ло­метр спус­ка был прой­ден за 10 минут.
Ответ: 8,5

23. На коль­це­вой до­ро­ге рас­по­ло­же­ны че­ты­ре бен­зо­ко­лон­ки: A, B, C и D. Рас­сто­я­ние между A и B — 35 км, между A и C — 20 км, между C и D — 20 км, между D и A — 30 км (все рас­сто­я­ния из­ме­ря­ют­ся вдоль коль­це­вой до­ро­ги в крат­чай­шую сто­ро­ну). Най­ди­те рас­сто­я­ние между B и C. Ответ дайте в ки­ло­мет­рах.
Ответ: 15

24. На коль­це­вой до­ро­ге рас­по­ло­же­ны че­ты­ре бен­зо­ко­лон­ки: A, B, C и D. Рас­сто­я­ние между A и B — 50 км, между A и C — 40 км, между C и D — 25 км, между D и A — 35 км (все рас­сто­я­ния из­ме­ря­ют­ся вдоль коль­це­вой до­ро­ги в крат­чай­шую сто­ро­ну). Най­ди­те рас­сто­я­ние между B и C.
Ответ: 10

25. В клас­се учит­ся 25 уча­щих­ся. Не­сколь­ко из них хо­ди­ли в кино, 18 че­ло­век хо­ди­ли в театр, причём и в кино, и в театр хо­ди­ли 12 че­ло­век. Из­вест­но, что трое не хо­ди­ли ни в кино, ни в театр. Сколь­ко че­ло­век из клас­са хо­ди­ли в кино?
Ответ: 16

26. По эм­пи­ри­че­ско­му за­ко­ну Мура сред­нее число тран­зи­сто­ров на мик­ро­схе­мах каж­дый год удва­и­ва­ет­ся. Из­вест­но, что в 2005 году сред­нее число тран­зи­сто­ров на мик­ро­схе­ме рав­ня­лось 520 млн. Опре­де­ли­те, сколь­ко в сред­нем мил­ли­о­нов тран­зи­сто­ров было на мик­ро­схе­ме в 2003 году.
Ответ: 130

27. В пер­вом ряду ки­но­за­ла 24 места, а в каж­дом сле­ду­ю­щем на 2 боль­ше, чем в преды­ду­щем. Сколь­ко мест в вось­мом ряду?
Ответ: 38

28. На палке от­ме­че­ны по­пе­реч­ные линии крас­но­го, жёлтого и зелёного цвета. Если рас­пи­лить палку по крас­ным ли­ни­ям, по­лу­чит­ся 5 кус­ков, если по жёлтым — 7 кус­ков, а если по зелёным — 11 кус­ков. Сколь­ко кус­ков по­лу­чит­ся, если рас­пи­лить палку по ли­ни­ям всех трёх цве­тов?
Ответ: 21

29. В ма­га­зи­не бы­то­вой тех­ни­ки объём про­даж хо­ло­диль­ни­ков носит се­зон­ный ха­рак­тер. В ян­ва­ре было про­да­но 10 хо­ло­диль­ни­ков, и в три по­сле­ду­ю­щих ме­ся­ца про­да­ва­ли по 10 хо­ло­диль­ни­ков. С мая про­да­жи уве­ли­чи­ва­лись на 15 еди­ниц по срав­не­нию с преды­ду­щим ме­ся­цем. С сен­тяб­ря объём про­даж начал умень­шать­ся на 15 хо­ло­диль­ни­ков каж­дый месяц от­но­си­тель­но преды­ду­ще­го ме­ся­ца. Сколь­ко хо­ло­диль­ни­ков про­дал ма­га­зин за год?
Ответ: 360

30. В об­мен­ном пунк­те можно со­вер­шить одну из двух опе­ра­ций:
1) за 3 зо­ло­тых мо­не­ты по­лу­чить 4 се­реб­ря­ных и одну мед­ную;
2) за 6 се­реб­ря­ных монет по­лу­чить 4 зо­ло­тых и одну мед­ную.
У Ни­ко­лы были толь­ко се­реб­ря­ные мо­не­ты. После по­се­ще­ний об­мен­но­го пунк­та се­реб­ря­ных монет у него стало мень­ше, зо­ло­тых не по­яви­лось, зато по­яви­лось 35 мед­ных. На сколь­ко умень­ши­лось ко­ли­че­ство се­реб­ря­ных монет у Ни­ко­лы?
Ответ: 10

31. Саша при­гла­сил Петю в гости, ска­зав, что живёт в седь­мом подъ­ез­де в квар­ти­ре № 462, а этаж ска­зать забыл. По­дой­дя к дому, Петя об­на­ру­жил, что дом се­ми­этаж­ный. На каком этаже живёт Саша? (На каж­дом этаже число квар­тир оди­на­ко­во, но­ме­ра квар­тир в доме на­чи­на­ют­ся с еди­ни­цы.)
Ответ: 5

32. Во всех подъ­ез­дах дома оди­на­ко­вое число эта­жей, а на каж­дом этаже оди­на­ко­вое число квар­тир. При этом число эта­жей в доме боль­ше числа квар­тир на этаже, число квар­тир на этаже боль­ше числа подъ­ез­дов, а число подъ­ез­дов боль­ше од­но­го. Сколь­ко эта­жей в доме, если всего в нём 110 квар­тир?
Ответ: 11

Легко сдаем